
 1

Select Test Cases for the Hackazon Application

Hayden Eubanks

School of Business, Liberty University

CSIS 485-B01

Prof. Backherms

October 1, 2023

 2

Select Test Cases for the Hackazon Application

Introduction:

One aspect that is essential to the development of resilient software is the thorough

testing and validation of security requirement implementations. Much of the cost associated with

insecure software can be directly attributed to insufficient testing (OWASP, 2020) highlighting

the importance of generating sufficient test cases and testing strategies. Further, the software

development lifecycle (SDLC) is not limited to technical implementations alone and as such,

people, processes, and technology should all be thoroughly tested to mitigate faults that could be

introduced in each area of the SDLC (Merkow & Raghavan, 2012). Additionally, software

testing must be integrated throughout the development process to ensure that security is

sufficient throughout all areas of implementation (NCSC, 2019). This can then be seen to reduce

bugs earlier in the SDLC and in doing so reduce the costs and time of implementation (Salva &

Regainia, 2019). A thorough understanding of the implications of testing on system security can

then allow development teams and security professionals to utilize testing best practices to

improve the security of a development project.

This test case report will then seek to address the primary risks facing the Hackazon

application by selecting test cases relevant to previously generated system requirements. To

accomplish this, an evaluation of the differing levels of system security testing will be performed

to give an overview of the different testing areas relevant to the SDLC. Following this, a

STRIDE threat model will be created to evaluate and categorize threats making the testing phase

regarding these threats easier to visualize and perform (Microsoft, 2022). Additionally, the threat

analysis can allow the development team to efficiently allocate resources to areas of testing

relevant to risk improving the efficiency of development and resilience of the product deliverable

 3

(OWASP, 2020). Extending from this analysis, the test cases can then be selected for the

Hackazon application and modeled in a test case reference table. This table will allow for easy

reference during the development process and further facilitates a shared vision of testing that

must be implemented within the SDLC (DSIT, 2023). Without guidance, the generation of test

cases can be insufficient to verify that security requirements are met within the project (Wang et

al., 2022) highlighting the importance of documenting testing requirements and expectations to

be met throughout the SDLC.

 4

Compare and Contrast the Different Levels of Security Testing:

As with other areas of the SDLC, security testing is not an isolated activity, but rather

layers of activities that are performed toward the common goal of achieving resiliency in

software security (Tsui, Karam, Bernal, 2016). These activities that form the sphere of security

testing can be generalized into the categories of manual inspection, threat modeling, the

reviewing of code, and penetration testing (OWASP, 2020). Each of these areas addresses

different elements of the testing process and integrating each of these areas’ activities into the

SDLC can then be seen to provide a comprehensive and holistic approach to security (NCSC,

2019). Security must be addressed in all areas of design and testing (Wang et al., 2022), and as

such it is essential for security professionals to understand each of these testing levels and their

roles in the SDLC.

The first level of security testing to be examined is the area concerning the manual

review of human elements of design including people, policies, and processes (OWASP, 2020).

The most common manner through which these tests are performed can be classified as the

analyzing of documentation and the performing of interviews with key individuals of the

development process including project stakeholders and developers (Merkow & Raghavan,

2012). These interviews and reviews can provide valuable insight for the development of test

cases as they provide a view of the way code or functionality is intended to work, developing a

baseline against which testing can be performed (OWASP, 2020). Further, these interviews

allow for the testing of the SDLC which is in itself a valuable contributor to the quality of project

development (OWASP, 2020).

The next layer of security testing, threat modeling, can then be approached to assess

security threats facing a system and prioritize testing resources according to that risk (Microsoft,

 5

2022). This threat analysis builds on the foundations of the risk analysis but furthers that analysis

by extending risk analysis to applications (OWASP, 2020). This analysis can assist developers in

addressing risks during the development process but additionally provides a framework from

which test cases can be generated to test the vulnerability of an implementation to specific risks

(NCSC, 2019). This further allows for threats to be categorized and resources allocated in

accordance with that categorization to ensure the most prominent risks are the most thoroughly

tested for (OWASP, 2020). As the name suggests, the analysis performed in this step can then

assist in the modeling of risks into lists and diagrams which can serve as valuable artifacts to the

development lifecycle and security testing (OWASP, 2020). Security in software design is aimed

at mitigating security threats and as such it is essential that the threats facing a system are

documented and prioritized so that testing can be made to address each risk area.

Where the previous levels of security testing addressed elements that could be tested

before development had begun, the reviewing of source code is an element of testing that is

performed during and after the development of code. This level of testing refers to the reviewing

of code implementations to identify errors and vulnerabilities that must be addressed in the

written code (OWASP, 2020). This could include testing as code is being written as well as in

larger functional components to identify coding vulnerabilities (Merkow & Raghavan, 2012).

These vulnerabilities could include deprecated code, coding mistakes, or bad coding practices

that many times would not be detected by automated testing processes, highlighting the

importance of combined automated and manual code reviews (OWASP, 2020). Testing at a

source code level provides an important view of functionality for security professionals as the

source code provides an in-depth representation of how functionality is implemented allowing

for the better detection of where vulnerabilities may exist (OWASP, 2020). However, source

 6

code reviews are only representative of white box testing where complete knowledge of the

system is provided in testing (Tsui, Karam, Bernal, 2016). For this reason, it may be beneficial to

additionally perform black box testing in which security professionals take on an adversarial

mindset and attempt to hack a system without knowledge of the internal code structure. Source

code is the level of abstraction on which development occurs, and for this reason, it is essential

for security professionals to perform reviews on this level and ensure that security objectives are

fulfilled within code implementations (OWASP, 2020).

The final development level, penetration testing, then represents the black box testing

approach where adversarial thinking is applied to a finished project to test a hacker’s ability to

surpass a project’s security features (OWASP, 2020). In this way, an understanding of the

effectiveness of security implementations can be achieved and decisions can be made as to areas

that require refactoring or improvement (Merkow & Raghavan, 2012). This form of testing

additionally carries the added benefit of allowing external parties to potentially highlight areas of

concern that had not been previously addressed in the security implementations (OWASP, 2020).

Penetration testing can be limited in the scope of vulnerabilities that it can address, but in certain

projects such as web applications, can be a valuable tool to identify the way a system responds to

a threat in action. Each of the levels of security testing approaches different aspects of system

security and through the application of testing at each level, a comprehensive review of security

effectiveness can be performed.

 7

Develop a Stride Threat Model:

The STRIDE threat modeling format is a way for a security professional to model the

threats facing a system and provides a framework from which testing can be performed

(Microsoft, 2019). The letters of the acronym STRIDE stand for each of the core focus areas of

the threat assessment being spoofing, tampering, repudiation, information disclosure, denial of

service, and elevation of privileges (NCSC, 2022). Understanding and modeling threats relevant

to these domains can then provide a development team with a shared understanding of risks

facing a system and allow for the creation of test cases to harden system security to these threats.

For this reason, the STRIDE threat model has been implemented to portray the threats facing the

Hackazon application which will then be used as the basis of test case formation.

The first area of the STRIDE threat model, spoofing, refers to a malicious actor’s ability

to access and then utilize the authentication credentials of a user other than their own (Microsoft,

2019). Broken access control is a major threat facing the Hackazon application, and as such

system areas regarding the authentication of users, where authentication occurs, data storage, and

data transportation must be examined, and test cases for each of these areas formed (NCSC,

2022). Spoofing can then be seen to be tested for within the Hackazon application through the

examination of authentication functions throughout the application. These areas should properly

conceal user credentials when stored or transported (NCSC, 2022) and additionally malicious

actors should be stopped from submitting false credentials. From this, test cases can be

developed to perform penetration testing on authentication points and ensure that access control

cannot be broken by spoofing. Spoofing is one of the primary threat areas facing the Hackazon

application, and as such resources should be dedicated to this threat vector to provide sufficient

testing of all access points.

 8

The next threat domain, tampering, can then be seen to represent a malicious actor’s

ability to modify system data (Microsoft, 2019). Within the Hackazon application, user data

could represent personal information but also data values such as user privileges or session IDs.

Tampering can then be seen to have severe implications as the modification of user privileges or

session IDs could result in session hijacking or broken access control (NCSC, 2022). From this,

test cases can then be developed to test against the modification of data in source code as well as

in the application. This could include the testing of hash value authentication where hash values

are used as well as the enforcement of thorough access control whenever data value

modifications are attempted (NCSC, 2022).

Following this, the next threat area of repudiation can be examined which addresses the

ability for system users to deny having taken part in an action (Microsoft, 2019). This threat can

mostly be mitigated through strong implementations of both policy and technical

implementations and as such, test cases can be generated to examine both of these

implementation domains. Within the Hackazon context, this could be observed as ensuring

proper encryption technologies to provide nonrepudiation are implemented such as the

enforcement of digital signatures and certificates (Basta, 2018). Further, accurate and protected

system logs can greatly contribute to nonrepudiation within a system (Merkow & Raghavan,

2012) and as such, policy regarding the implementation of logs can be examined to ensure that a

sufficient amount of logging is taking place. This can then further be tested in the application

itself to ensure that logs are accurately taken, and signature validation is performed when a user

initiates an action request.

This then leads to the next threat area to be modeled being the area of information

disclosure. Information disclosure refers to a violation of data confidentiality in which data is

 9

exposed to a user who is not its owner (Microsoft, 2019). This threat can occur due to errors in

implementation, data storage, or malicious action and as such should be tested through all areas

of implementation. Within the Hackazon application, this then can be seen as a thorough

examination of source code including the areas of code that send database requests to ensure that

user validation is enforced at each of these areas. Additionally, penetration testing can be

performed to ensure that an incorrect presentation of user data does not occur throughout the

system. Information disclosure is a serious threat facing the Hackazon application as sensitive

user data such as payment and personal details are stored and the fact that a breach of this data

could open the organization up to litigation. For this reason, a large portion of testing resources

should be committed to the sphere of testing against improper information disclosures.

Another threat domain that must be addressed and modeled for test cases within the

Hackazon application is exposure to denial-of-service (DoS) attacks (Microsoft, 2019). As

Hackazon is a web-based application, the loss of services could have serious implications on

costs and reputation highlighting this threat area as a major area of system concern. For this

reason, test cases must be generated to discover how vulnerable the system is to DoS attacks and

determine if additional mitigation strategies are needed (NCSC, 2022). With this in mind, it can

be seen that the primary testing domain for this threat area is penetration testing as the threat

faces the application service itself. However, source code evaluation and policy examination for

security response plans can ensure that sufficient mitigation exists within the organizational

structure to defend against DoS attacks.

The final area of concern to be modeled through the STRIDE threat analysis can then be

seen as the area of elevating privileges. The elevation of privileges is one of the primary vectors

of attack as it can allow for powerful administrative actions to be taken (Merkow & Raghavan,

 10

2012) highlighting the importance of sufficient testing to be performed so that privilege

escalation cannot occur. Within the Hackazon context, each user group and privilege category

should be thoroughly tested by creating accounts of varying privilege levels and ensuring access

control cannot be broken with these groups. This includes extra controls being placed on

administrative accounts as well as proper validation of administrative users and actions (NCSC,

2022). From this, the importance of testing all privilege escalation commands thoroughly can be

seen and source code and penetration testing should be performed to ensure that privilege

escalation can only occur within the approved context.

The threat model generated from the STRIDE framework can then serve as an artifact for

the development team in generating specific test case implementations within the Hackazon

context. Mitigating threats in these areas will vastly increase the security of the system

highlighting the importance of conducting testing according to a shared testing framework and

understanding (Tsui, Karam, Bernal, 2016). The application of the STRIDE threat model will

then further allow for the measuring of testing metrics aiding the security professional and

development team in determining the effectiveness of an implementation as well as the primary

threats the system remains vulnerable to. These metrics are an essential part of the development

process and can serve as guidance toward new implementations or mitigation efforts in further

refactoring increasing the resilience of the deliverable software product (Merkow & Raghavan,

2012). This highlights the importance of modeling system threats and within the context of the

Hackazon application will contribute to an improved security implementation.

 11

Select Appropriate Security Test Cases:

SR ID SR Name STC ID STC Name STC Description, Constraints, and Comments

SR-IDEN-001 Unique User ID STC-IDEN-001 Unique User ID To better enforce access control, each user will be forced to create a

unique user ID (Merkow & Raghavan, 2012). This requirement can

be tested by attempting to create users with the same user ID as well

as modifying a user ID to an existing ID. In both of these cases, the

system should reject the process and inform the user to select a

different user ID.

SR-IDEN-002 Backdoor Prevention STC-IDEN-

002-1

Backdoor

Prevention 1

This test case is designed to verify that a user is logged in before

being given access to system resources (Merkow & Raghavan,

2012). This use case can be tested by attempting to bypass the user

authentication stage and ensuring that no attempt succeeds. This

testing may then include penetration testing as attempts to access the

system through bypassing verification will be made remotely by

external parties.

 12

SR-IDEN-002 Backdoor Prevention STC-IDEN-

002-2

Backdoor

Prevention 2

This test case then reviews the source-level code to identify any

logical errors through which access control could be broken

(Merkow & Raghavan, 2012). This test must then examine all code

that addresses access control features of interfaces and verify that

access control cannot be broken from a theoretical standpoint.

SR-IDEN-003 Process Identifier

Code/Accountability

STC-IDEN-003 Process Identifier

Code/Accountability

This test case involves ensuring that all system processes are

associated with a user ID to verify which user initiated the command

as well as if the appropriate privileges are held to execute that

command (Merkow & Raghavan, 2012). This test case can be

performed by creating users of each user group and then attempting

processes in each user group to ensure that process IDs are generated

and that the proper access control is implemented.

SR-IDEN-004 Auto disable User IDs STC-IDEN-004 Auto disable User

IDs

The auto-disable test case will then seek to verify that a user ID will

be disabled after a certain period of inactivity (Merkow & Raghavan,

2012). This test case can be performed by activating a user ID and

then allowing that user ID to idle for the appropriate amount of time

 13

while observing the state of that ID. This can then allow for an

understanding if the disabling feature is working correctly to be

established.

SR-IDEN-005 Security Attributes STC-IDEN-005 Security Attributes The testing for security attribute compliance then refers to the correct

assigning of user privileges to each user group (Merkow &

Raghavan, 2012). This security feature can be tested by creating a

user of each user group type and testing privileges both allowed and

disallowed for that user to ensure correct access control principles are

followed. Further, the review of source code regarding access control

can allow for further examination of user group privileges allowing

for confirmation that proper access control is implemented.

SR-ATEN-001 Credential Security STC-ATEN-

001

Credential Security This security test case refers to the testing and verification that one-

way hashes are applied to all passwords stored in the database

(Merkow & Raghavan, 2012). This test case can be performed by

creating a password for a user and examining the database entry to

ensure that the appropriate hashing has occurred. Further, running the

 14

same password into the database with a second user can then confirm

that appropriate salt is added to the hashes to ensure that identical

passwords hash to different values for unique users.

SR-ATEN-002 Replay Attack

Protection

STC-ATEN-

002

Replay Attack

Protection

Replay attack protection is an essential aspect of security for the

Hackazon application and test cases can be generated to ensure that

these attacks are not possible. These attacks can be tested for by

attempting to deploy a replay attack on the system through

penetration testing and observing if the attack can be performed.

Further, analysis of the code sections that mitigate replay attacks can

be investigated to verify that proper security practices are followed.

SR-ATEN-003 Protect Credential

Guessing

STC-ATEN-

003

Protect Credential

Guessing

This test case refers to ensuring that error messages do not give too

much information regarding the underlying implementation (Merkow

& Raghavan, 2012). To test this, a variety of errors can be

intentionally performed on the system and the error messages

observed. If the system stores all of its error messages in a

centralized file location, the examination of error codes and their

 15

associated triggers can also be performed to validate that error codes

are not overly specific as written. Further, brute force attacks should

be protected against (Merkow & Raghavan, 2012) and this can be

tested by attempting to brute force a user’s credentials and observing

the system’s response to this attack.

SR-ATEN-005 Reauthentication STC-ATEN-

005

Reauthentication For this test case, a reauthentication of user credentials must be

performed at each critical section of the application (Merkow &

Raghavan, 2012). This test can be performed by attempting to access

each critical section of the application and ensuring that proper

reauthentication is enforced.

SR-ATEN-006 Protection of

Credentials

STC-ATEN-

006

Protection of

Credentials

To verify that the user’s credentials are not sent in plain text, the test

case can be performed where a penetration tester sniffs network

traffic while submitting user credentials through each relevant point

in the application. This observation will then allow for an

understanding if encryption is being performed at each critical point

as well as if the appropriate transfer protocols are being used.

 16

SR-ATEN-007 Password Changes STC-ATEN-

007

Password Changes For this test case, specific criteria regarding password change policy

must be verified as enforced within the Hackazon application

(Merkow & Raghavan, 2012). These criteria include the change of a

user’s password upon first login and at will later on. Further, the

forced avoidance of password change must not be possible, and all

user interaction must lead to the password change page before further

user action can be taken. This can be tested by creating a user

account relevant to each stage of password change and ensuring the

correct procedures are enforced.

SR-ATEN-008 Password Aging STC-ATEN-

008

Password Aging All user passwords should expire after a given amount of time and

this must be tested both logically and in practice within the system

(Merkow & Raghavan, 2012). To test this, a user account can be

created, and the password for that account aged within the database

to observe if the system enforces password modification. Further

testing can then be performed within the context of actual time to

ensure expiration occurs as intended.

 17

SR-ATEN-010 Secure Password

Changes

STC-ATEN-

010

Secure Password

Changes

When a user attempts to change their password, a reauthentication of

the user’s credentials should be performed (Merkow & Raghavan,

2012). This test case can then be easily performed by creating a user

and attempting to change the password for that user.

SR-ATEN-013 Configurable False

Accept/Rejection

STC-ATEN-

013

Configurable False

Accept/Rejection

An automated testing approach can be performed to test for false

acceptance and rejection cases and an evaluation of these cases could

then be performed. Ideally, no false acceptance or rejections should

be performed, but given the choice the system should be seen to

prioritize rejection and this feature can also be validated through this

testing.

SR-AUTR-002 Access Rights STC-AUTR-

001-1

Access Rights 1 This test case involves the system validating that a user holds the

appropriate access rights before being granted access to resources. To

test this, user accounts of varying access rights can be created and

attempt to access resources they both do and do not have access

rights for. An evaluation of the effectiveness of the control can then

be performed as access control should not be broken.

 18

SR-AUTR-002 Access Rights STC-AUTR-

001-2

Access Rights 2 Differing from the previous test case, this test case involves the

ability for a malicious actor to brute force web page URLs until

access is gained to a restricted part of the application (Merkow &

Raghavan, 2012). This can be tested for by taking the map of the

application’s URLs and attempting to break access control by

manually entering those URLs into the browser. It can then be

confirmed if the proper controls are in place to mitigate this risk.

SR-AUTR-002 Access Rights STC-AUTR-

001-3

Access Rights 3 Additionally, the system should not allow access for users to hidden

parameters (Merkow & Raghavan, 2012) and this can be tested for

by examining the source code to identify any parameters that may

exist within the application and then trying to access them through

penetration testing.

SR-AUTR-003 Account Lockout STC-AUTR-

003

Account Lockout When consecutive incorrect login attempts are made, the system

should lock the user out until further verification can be performed

(Merkow & Raghavan, 2012). This can be tested by attempting to log

in to a user account with incorrect credentials and observing the

 19

outcome. This test would then be marked as successful if the lockout

occurs on the correct login attempt and the user is informed that they

must further verify themselves.

SR-AUTR-006 Session Timeout STC-AUTR-

006

Session Timeout This test will then ensure that a timeout feature is present and

functioning within the application (Merkow & Raghavan, 2012).

When a user has been inactive for a given period of time, they should

be signed out of the system, and this can be tested through creating a

user account and then observing when the timeout feature kicks in

for that user. The time to logout is a measurable component of this

test case and can be compared against the intended time to ensure

compliance.

SR-AUTR-008 User and Group

Privileges

STC-AUTR-

008

User and Group

Privileges

The system must maintain the capability to implement user access

groups (Merkow & Raghavan, 2012) and this can be verified by

inspecting the source code as well as the administrative interfaces for

implementing such controls.

 20

SR-AUTR-009 Role-Based Access

Control (RBAC)

STC-AUTR-

009

Role-Based Access

Control (RBAC)

Like the test case above, this test case involves further exploration to

ensure that appropriate user classes are created and that the

appropriate privileges are assigned to each user class. These user

classes can be compared against the requirements documentation to

ensure that the principle of least privilege is being followed in

implementation. This can be further verified through interviews to

ensure features are not granted to user groups that do not need them.

SR-AUDT-001 Audit Log STC-AUDT-

001

Audit Log The system should maintain an audit log that logs all relevant

security events (Merkow & Raghavan, 2012). This can be tested by

first confirming that the audit log exists, and then committing

security-related events to ensure the events are properly logged.

SR-AUDT-003 Logging of Specific

Events

STC-AUDT-

003

Logging of Specific

Events

As an extension of the previous test case, this test case furthers the

exploration by looking at specific cases that need to be logged. These

specific cases can be performed in various ways to ensure that

logging occurs in every circumstance needed.

 21

SR-AUDT-005 Archival of Audit

Logs

STC-AUDT-

005

Archival of Audit

Logs

Similarly, the archival of logs must be performed with logs being

stored for the appropriate amount of time (Merkow & Raghavan,

2012). This feature can be tested through the creation and aging of

log entries to ensure the proper procedures are followed. Further,

source code evaluation can additionally confirm that these

procedures are implemented as intended.

SR-AUDT-008 Protection of Audit

Log

STC-AUDT-

008

Protection of Audit

Log

As audit logs are a prime target of malicious actors, audit logs must

not be modifiable by users including administrators (Merkow &

Raghavan, 2012). An internal penetration test can be performed to

attempt to modify these logs and a verification of the outcome can

then be observed.

SR-INTG-001 Integrity Checking STC-INTG-001 Integrity Checking This test case references the ability of the system to perform integrity

checking in any area where data is transmitted and received (Merkow

& Raghavan, 2012). In these areas, a thorough evaluation of the

integrity-checking process can be performed and from this analysis,

an understanding of compliance can be gained. These integrity

 22

checks could also be performed at the source code level to ensure

that proper enforcement is implemented in the code.

SR-INTG-002 Source Identification STC-INTG-002 Source

Identification

Any time an address is passed to the application, the application must

be able to verify the source of that destination (Merkow & Raghavan,

2012). This ability can be tested by attempting to perform a server-

side request forgery attack and documenting the results. The system

should not allow these attacks to occur and the proper rejection

actions should be taken.

SR-INTG-005 Integrity of Sensitive

Information

STC-INTG-005 Integrity of

Sensitive

Information

For this test case, a thorough examination of the transport protocols

used in transporting information can be performed. This can be tested

at all points where sensitive information is transported and in all

cases the data should be transported by secure transfer protocols with

no known vulnerabilities. Any non-compliant protocols should then

be brought into compliance and changed to validated protocols.

SR-INTG-007 Integrity Checks STC-INTG-007 Integrity Checks The Hackazon application must have the ability to perform integrity

checks and this feature can be tested by observing all receiving

 23

points for data and verifying that integrity checks are enforced at

each. This will primarily be observed through source code

examination but can also be observed in attempting to transfer code

that has been modified en route and observing the system’s reaction

to such code.

 24

References

Basta, A. (2018). Oriyano, cryptography: Infosec pro guide. McGraw-Hill Education.

https://bookshelf.vitalsource.com/reader/books/9781307297003/pageid/14

DSIT. (2023). Conducting a STRIDE based threat analysis. Department for Science, Innovation,

and Technology.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_

data/file/1155778/Conducting_a_STRIDE-based_threat_analysis.pdf

Merkow, M. S., & Raghavan, L. (2012). Secure and resilient software: Requirements, test cases,

and testing methods (1st ed.). CRC Press. https://doi.org/10.1201/b11317

Microsoft. (August 25, 2022). Microsoft threat modeling tool: Threats. Microsoft.

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats

NCSC. (February 20, 2019). Secure development and deployment guidance. National Cyber

Security Centre. https://www.ncsc.gov.uk/collection/developers-

collection/principles/continually-test-your-security

OWASP. (March 12, 2020). OWASP: Web security testing guide. OWASP.

https://owasp.org/www-project-web-security-testing-guide/

Salva, S., & Regainia, L. (2019). An approach for guiding developers in the choice of security

solutions and in the generation of concrete test cases. Software Quality Journal, 27(2),

675-701. https://doi.org/10.1007/s11219-018-9438-2

Tsui, F, Karam, O., Bernal, B. (2016). Essentials of Software Engineering (4th ed.). Jones &

Bartlett Learning. https://libertyonline.vitalsource.com/books/9781284129755

https://bookshelf.vitalsource.com/reader/books/9781307297003/pageid/14
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1155778/Conducting_a_STRIDE-based_threat_analysis.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1155778/Conducting_a_STRIDE-based_threat_analysis.pdf
https://doi.org/10.1201/b11317
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://www.ncsc.gov.uk/collection/developers-collection/principles/continually-test-your-security
https://www.ncsc.gov.uk/collection/developers-collection/principles/continually-test-your-security
https://owasp.org/www-project-web-security-testing-guide/
https://doi.org/10.1007/s11219-018-9438-2
https://libertyonline.vitalsource.com/books/9781284129755

 25

Wang, C., Pastore, F., Goknil, A., & Briand, L. C. (2022). Automatic generation of acceptance

test cases from use case specifications: An NLP-based approach. IEEE Transactions on

Software Engineering, 48(2), 585-616. https://doi.org/10.1109/TSE.2020.2998503

https://doi.org/10.1109/TSE.2020.2998503

	References

