Select Test Cases for the Hackazon Application

Hayden Eubanks
School of Business, Liberty University
CSIS 485-B01
Prof. Backherms

October 1, 2023

Select Test Cases for the Hackazon Application

Introduction:

One aspect that is essential to the development of resilient software is the thorough
testing and validation of security requirement implementations. Much of the cost associated with
insecure software can be directly attributed to insufficient testing (OWASP, 2020) highlighting
the importance of generating sufficient test cases and testing strategies. Further, the software
development lifecycle (SDLC) is not limited to technical implementations alone and as such,
people, processes, and technology should all be thoroughly tested to mitigate faults that could be
introduced in each area of the SDLC (Merkow & Raghavan, 2012). Additionally, software
testing must be integrated throughout the development process to ensure that security is
sufficient throughout all areas of implementation (NCSC, 2019). This can then be seen to reduce
bugs earlier in the SDLC and in doing so reduce the costs and time of implementation (Salva &
Regainia, 2019). A thorough understanding of the implications of testing on system security can
then allow development teams and security professionals to utilize testing best practices to
improve the security of a development project.

This test case report will then seek to address the primary risks facing the Hackazon
application by selecting test cases relevant to previously generated system requirements. To
accomplish this, an evaluation of the differing levels of system security testing will be performed
to give an overview of the different testing areas relevant to the SDLC. Following this, a
STRIDE threat model will be created to evaluate and categorize threats making the testing phase
regarding these threats easier to visualize and perform (Microsoft, 2022). Additionally, the threat
analysis can allow the development team to efficiently allocate resources to areas of testing

relevant to risk improving the efficiency of development and resilience of the product deliverable

(OWASP, 2020). Extending from this analysis, the test cases can then be selected for the
Hackazon application and modeled in a test case reference table. This table will allow for easy
reference during the development process and further facilitates a shared vision of testing that
must be implemented within the SDLC (DSIT, 2023). Without guidance, the generation of test
cases can be insufficient to verify that security requirements are met within the project (Wang et
al., 2022) highlighting the importance of documenting testing requirements and expectations to

be met throughout the SDLC.

Compare and Contrast the Different Levels of Security Testing:

As with other areas of the SDLC, security testing is not an isolated activity, but rather
layers of activities that are performed toward the common goal of achieving resiliency in
software security (Tsui, Karam, Bernal, 2016). These activities that form the sphere of security
testing can be generalized into the categories of manual inspection, threat modeling, the
reviewing of code, and penetration testing (OWASP, 2020). Each of these areas addresses
different elements of the testing process and integrating each of these areas’ activities into the
SDLC can then be seen to provide a comprehensive and holistic approach to security (NCSC,
2019). Security must be addressed in all areas of design and testing (Wang et al., 2022), and as
such it is essential for security professionals to understand each of these testing levels and their
roles in the SDLC.

The first level of security testing to be examined is the area concerning the manual
review of human elements of design including people, policies, and processes (OWASP, 2020).
The most common manner through which these tests are performed can be classified as the
analyzing of documentation and the performing of interviews with key individuals of the
development process including project stakeholders and developers (Merkow & Raghavan,
2012). These interviews and reviews can provide valuable insight for the development of test
cases as they provide a view of the way code or functionality is intended to work, developing a
baseline against which testing can be performed (OWASP, 2020). Further, these interviews
allow for the testing of the SDLC which is in itself a valuable contributor to the quality of project
development (OWASP, 2020).

The next layer of security testing, threat modeling, can then be approached to assess

security threats facing a system and prioritize testing resources according to that risk (Microsoft,

2022). This threat analysis builds on the foundations of the risk analysis but furthers that analysis
by extending risk analysis to applications (OWASP, 2020). This analysis can assist developers in
addressing risks during the development process but additionally provides a framework from
which test cases can be generated to test the vulnerability of an implementation to specific risks
(NCSC, 2019). This further allows for threats to be categorized and resources allocated in
accordance with that categorization to ensure the most prominent risks are the most thoroughly
tested for (OWASP, 2020). As the name suggests, the analysis performed in this step can then
assist in the modeling of risks into lists and diagrams which can serve as valuable artifacts to the
development lifecycle and security testing (OWASP, 2020). Security in software design is aimed
at mitigating security threats and as such it is essential that the threats facing a system are
documented and prioritized so that testing can be made to address each risk area.

Where the previous levels of security testing addressed elements that could be tested
before development had begun, the reviewing of source code is an element of testing that is
performed during and after the development of code. This level of testing refers to the reviewing
of code implementations to identify errors and vulnerabilities that must be addressed in the
written code (OWASP, 2020). This could include testing as code is being written as well as in
larger functional components to identify coding vulnerabilities (Merkow & Raghavan, 2012).
These vulnerabilities could include deprecated code, coding mistakes, or bad coding practices
that many times would not be detected by automated testing processes, highlighting the
importance of combined automated and manual code reviews (OWASP, 2020). Testing at a
source code level provides an important view of functionality for security professionals as the
source code provides an in-depth representation of how functionality is implemented allowing

for the better detection of where vulnerabilities may exist (OWASP, 2020). However, source

code reviews are only representative of white box testing where complete knowledge of the
system is provided in testing (Tsui, Karam, Bernal, 2016). For this reason, it may be beneficial to
additionally perform black box testing in which security professionals take on an adversarial
mindset and attempt to hack a system without knowledge of the internal code structure. Source
code is the level of abstraction on which development occurs, and for this reason, it is essential
for security professionals to perform reviews on this level and ensure that security objectives are
fulfilled within code implementations (OWASP, 2020).

The final development level, penetration testing, then represents the black box testing
approach where adversarial thinking is applied to a finished project to test a hacker’s ability to
surpass a project’s security features (OWASP, 2020). In this way, an understanding of the
effectiveness of security implementations can be achieved and decisions can be made as to areas
that require refactoring or improvement (Merkow & Raghavan, 2012). This form of testing
additionally carries the added benefit of allowing external parties to potentially highlight areas of
concern that had not been previously addressed in the security implementations (OWASP, 2020).
Penetration testing can be limited in the scope of vulnerabilities that it can address, but in certain
projects such as web applications, can be a valuable tool to identify the way a system responds to
a threat in action. Each of the levels of security testing approaches different aspects of system
security and through the application of testing at each level, a comprehensive review of security

effectiveness can be performed.

Develop a Stride Threat Model:

The STRIDE threat modeling format is a way for a security professional to model the
threats facing a system and provides a framework from which testing can be performed
(Microsoft, 2019). The letters of the acronym STRIDE stand for each of the core focus areas of
the threat assessment being spoofing, tampering, repudiation, information disclosure, denial of
service, and elevation of privileges (NCSC, 2022). Understanding and modeling threats relevant
to these domains can then provide a development team with a shared understanding of risks
facing a system and allow for the creation of test cases to harden system security to these threats.
For this reason, the STRIDE threat model has been implemented to portray the threats facing the
Hackazon application which will then be used as the basis of test case formation.

The first area of the STRIDE threat model, spoofing, refers to a malicious actor’s ability
to access and then utilize the authentication credentials of a user other than their own (Microsoft,
2019). Broken access control is a major threat facing the Hackazon application, and as such
system areas regarding the authentication of users, where authentication occurs, data storage, and
data transportation must be examined, and test cases for each of these areas formed (NCSC,
2022). Spoofing can then be seen to be tested for within the Hackazon application through the
examination of authentication functions throughout the application. These areas should properly
conceal user credentials when stored or transported (NCSC, 2022) and additionally malicious
actors should be stopped from submitting false credentials. From this, test cases can be
developed to perform penetration testing on authentication points and ensure that access control
cannot be broken by spoofing. Spoofing is one of the primary threat areas facing the Hackazon
application, and as such resources should be dedicated to this threat vector to provide sufficient

testing of all access points.

The next threat domain, tampering, can then be seen to represent a malicious actor’s
ability to modify system data (Microsoft, 2019). Within the Hackazon application, user data
could represent personal information but also data values such as user privileges or session IDs.
Tampering can then be seen to have severe implications as the modification of user privileges or
session I1Ds could result in session hijacking or broken access control (NCSC, 2022). From this,
test cases can then be developed to test against the modification of data in source code as well as
in the application. This could include the testing of hash value authentication where hash values
are used as well as the enforcement of thorough access control whenever data value
modifications are attempted (NCSC, 2022).

Following this, the next threat area of repudiation can be examined which addresses the
ability for system users to deny having taken part in an action (Microsoft, 2019). This threat can
mostly be mitigated through strong implementations of both policy and technical
implementations and as such, test cases can be generated to examine both of these
implementation domains. Within the Hackazon context, this could be observed as ensuring
proper encryption technologies to provide nonrepudiation are implemented such as the
enforcement of digital signatures and certificates (Basta, 2018). Further, accurate and protected
system logs can greatly contribute to nonrepudiation within a system (Merkow & Raghavan,
2012) and as such, policy regarding the implementation of logs can be examined to ensure that a
sufficient amount of logging is taking place. This can then further be tested in the application
itself to ensure that logs are accurately taken, and signature validation is performed when a user
initiates an action request.

This then leads to the next threat area to be modeled being the area of information

disclosure. Information disclosure refers to a violation of data confidentiality in which data is

exposed to a user who is not its owner (Microsoft, 2019). This threat can occur due to errors in
implementation, data storage, or malicious action and as such should be tested through all areas
of implementation. Within the Hackazon application, this then can be seen as a thorough
examination of source code including the areas of code that send database requests to ensure that
user validation is enforced at each of these areas. Additionally, penetration testing can be
performed to ensure that an incorrect presentation of user data does not occur throughout the
system. Information disclosure is a serious threat facing the Hackazon application as sensitive
user data such as payment and personal details are stored and the fact that a breach of this data
could open the organization up to litigation. For this reason, a large portion of testing resources
should be committed to the sphere of testing against improper information disclosures.

Another threat domain that must be addressed and modeled for test cases within the
Hackazon application is exposure to denial-of-service (DoS) attacks (Microsoft, 2019). As
Hackazon is a web-based application, the loss of services could have serious implications on
costs and reputation highlighting this threat area as a major area of system concern. For this
reason, test cases must be generated to discover how vulnerable the system is to DoS attacks and
determine if additional mitigation strategies are needed (NCSC, 2022). With this in mind, it can
be seen that the primary testing domain for this threat area is penetration testing as the threat
faces the application service itself. However, source code evaluation and policy examination for
security response plans can ensure that sufficient mitigation exists within the organizational
structure to defend against DoS attacks.

The final area of concern to be modeled through the STRIDE threat analysis can then be
seen as the area of elevating privileges. The elevation of privileges is one of the primary vectors

of attack as it can allow for powerful administrative actions to be taken (Merkow & Raghavan,

10

2012) highlighting the importance of sufficient testing to be performed so that privilege
escalation cannot occur. Within the Hackazon context, each user group and privilege category
should be thoroughly tested by creating accounts of varying privilege levels and ensuring access
control cannot be broken with these groups. This includes extra controls being placed on
administrative accounts as well as proper validation of administrative users and actions (NCSC,
2022). From this, the importance of testing all privilege escalation commands thoroughly can be
seen and source code and penetration testing should be performed to ensure that privilege
escalation can only occur within the approved context.

The threat model generated from the STRIDE framework can then serve as an artifact for
the development team in generating specific test case implementations within the Hackazon
context. Mitigating threats in these areas will vastly increase the security of the system
highlighting the importance of conducting testing according to a shared testing framework and
understanding (Tsui, Karam, Bernal, 2016). The application of the STRIDE threat model will
then further allow for the measuring of testing metrics aiding the security professional and
development team in determining the effectiveness of an implementation as well as the primary
threats the system remains vulnerable to. These metrics are an essential part of the development
process and can serve as guidance toward new implementations or mitigation efforts in further
refactoring increasing the resilience of the deliverable software product (Merkow & Raghavan,
2012). This highlights the importance of modeling system threats and within the context of the

Hackazon application will contribute to an improved security implementation.

Select Appropriate Security Test Cases:

11

SRID SR Name STCID STC Name STC Description, Constraints, and Comments

SR-IDEN-001 | Unique User ID STC-IDEN-001 | Unique User ID To better enforce access control, each user will be forced to create a
unique user ID (Merkow & Raghavan, 2012). This requirement can
be tested by attempting to create users with the same user ID as well
as modifying a user ID to an existing ID. In both of these cases, the
system should reject the process and inform the user to select a
different user ID.

SR-IDEN-002 | Backdoor Prevention STC-IDEN- | Backdoor This test case is designed to verify that a user is logged in before

002-1 Prevention 1 being given access to system resources (Merkow & Raghavan,

2012). This use case can be tested by attempting to bypass the user
authentication stage and ensuring that no attempt succeeds. This
testing may then include penetration testing as attempts to access the
system through bypassing verification will be made remotely by

external parties.

12

SR-IDEN-002 | Backdoor Prevention STC-IDEN- | Backdoor This test case then reviews the source-level code to identify any
002-2 Prevention 2 logical errors through which access control could be broken
(Merkow & Raghavan, 2012). This test must then examine all code
that addresses access control features of interfaces and verify that

access control cannot be broken from a theoretical standpoint.

SR-IDEN-003 | Process Identifier STC-IDEN-003 | Process Identifier This test case involves ensuring that all system processes are
Code/Accountability Code/Accountability | associated with a user ID to verify which user initiated the command
as well as if the appropriate privileges are held to execute that
command (Merkow & Raghavan, 2012). This test case can be
performed by creating users of each user group and then attempting
processes in each user group to ensure that process IDs are generated

and that the proper access control is implemented.

SR-IDEN-004 | Auto disable User IDs | STC-IDEN-004 | Auto disable User The auto-disable test case will then seek to verify that a user ID will
IDs be disabled after a certain period of inactivity (Merkow & Raghavan,
2012). This test case can be performed by activating a user ID and

then allowing that user ID to idle for the appropriate amount of time

13

while observing the state of that ID. This can then allow for an
understanding if the disabling feature is working correctly to be

established.

SR-IDEN-005

Security Attributes

STC-IDEN-005

Security Attributes

The testing for security attribute compliance then refers to the correct
assigning of user privileges to each user group (Merkow &
Raghavan, 2012). This security feature can be tested by creating a
user of each user group type and testing privileges both allowed and
disallowed for that user to ensure correct access control principles are
followed. Further, the review of source code regarding access control
can allow for further examination of user group privileges allowing

for confirmation that proper access control is implemented.

SR-ATEN-001

Credential Security

STC-ATEN-

001

Credential Security

This security test case refers to the testing and verification that one-
way hashes are applied to all passwords stored in the database
(Merkow & Raghavan, 2012). This test case can be performed by
creating a password for a user and examining the database entry to

ensure that the appropriate hashing has occurred. Further, running the

14

same password into the database with a second user can then confirm
that appropriate salt is added to the hashes to ensure that identical

passwords hash to different values for unique users.

SR-ATEN-002

Replay Attack

Protection

STC-ATEN-

002

Replay Attack

Protection

Replay attack protection is an essential aspect of security for the
Hackazon application and test cases can be generated to ensure that
these attacks are not possible. These attacks can be tested for by
attempting to deploy a replay attack on the system through
penetration testing and observing if the attack can be performed.
Further, analysis of the code sections that mitigate replay attacks can

be investigated to verify that proper security practices are followed.

SR-ATEN-003

Protect Credential

Guessing

STC-ATEN-

003

Protect Credential

Guessing

This test case refers to ensuring that error messages do not give too
much information regarding the underlying implementation (Merkow
& Raghavan, 2012). To test this, a variety of errors can be
intentionally performed on the system and the error messages
observed. If the system stores all of its error messages in a

centralized file location, the examination of error codes and their

15

associated triggers can also be performed to validate that error codes
are not overly specific as written. Further, brute force attacks should
be protected against (Merkow & Raghavan, 2012) and this can be

tested by attempting to brute force a user’s credentials and observing

the system’s response to this attack.

SR-ATEN-005 | Reauthentication STC-ATEN- | Reauthentication For this test case, a reauthentication of user credentials must be
005 performed at each critical section of the application (Merkow &
Raghavan, 2012). This test can be performed by attempting to access
each critical section of the application and ensuring that proper
reauthentication is enforced.
SR-ATEN-006 | Protection of STC-ATEN- | Protection of To verify that the user’s credentials are not sent in plain text, the test
Credentials 006 Credentials case can be performed where a penetration tester sniffs network

traffic while submitting user credentials through each relevant point
in the application. This observation will then allow for an
understanding if encryption is being performed at each critical point

as well as if the appropriate transfer protocols are being used.

16

SR-ATEN-007

Password Changes

STC-ATEN-

007

Password Changes

For this test case, specific criteria regarding password change policy
must be verified as enforced within the Hackazon application
(Merkow & Raghavan, 2012). These criteria include the change of a
user’s password upon first login and at will later on. Further, the
forced avoidance of password change must not be possible, and all
user interaction must lead to the password change page before further
user action can be taken. This can be tested by creating a user
account relevant to each stage of password change and ensuring the

correct procedures are enforced.

SR-ATEN-008

Password Aging

STC-ATEN-

008

Password Aging

All user passwords should expire after a given amount of time and
this must be tested both logically and in practice within the system
(Merkow & Raghavan, 2012). To test this, a user account can be
created, and the password for that account aged within the database
to observe if the system enforces password modification. Further
testing can then be performed within the context of actual time to

ensure expiration occurs as intended.

17

SR-ATEN-010 | Secure Password STC-ATEN- | Secure Password When a user attempts to change their password, a reauthentication of
Changes 010 Changes the user’s credentials should be performed (Merkow & Raghavan,
2012). This test case can then be easily performed by creating a user
and attempting to change the password for that user.
SR-ATEN-013 | Configurable False STC-ATEN- | Configurable False | An automated testing approach can be performed to test for false
Accept/Rejection 013 Accept/Rejection acceptance and rejection cases and an evaluation of these cases could
then be performed. Ideally, no false acceptance or rejections should
be performed, but given the choice the system should be seen to
prioritize rejection and this feature can also be validated through this
testing.
SR-AUTR-002 | Access Rights STC-AUTR- | Access Rights 1 This test case involves the system validating that a user holds the
001-1 appropriate access rights before being granted access to resources. To

test this, user accounts of varying access rights can be created and
attempt to access resources they both do and do not have access
rights for. An evaluation of the effectiveness of the control can then

be performed as access control should not be broken.

18

SR-AUTR-002 | Access Rights STC-AUTR- | Access Rights 2 Differing from the previous test case, this test case involves the
001-2 ability for a malicious actor to brute force web page URLS until
access is gained to a restricted part of the application (Merkow &
Raghavan, 2012). This can be tested for by taking the map of the
application’s URLs and attempting to break access control by
manually entering those URLS into the browser. It can then be

confirmed if the proper controls are in place to mitigate this risk.

SR-AUTR-002 | Access Rights STC-AUTR- | Access Rights 3 Additionally, the system should not allow access for users to hidden
001-3 parameters (Merkow & Raghavan, 2012) and this can be tested for
by examining the source code to identify any parameters that may
exist within the application and then trying to access them through

penetration testing.

SR-AUTR-003 | Account Lockout STC-AUTR- | Account Lockout When consecutive incorrect login attempts are made, the system
003 should lock the user out until further verification can be performed
(Merkow & Raghavan, 2012). This can be tested by attempting to log

in to a user account with incorrect credentials and observing the

19

outcome. This test would then be marked as successful if the lockout
occurs on the correct login attempt and the user is informed that they

must further verify themselves.

SR-AUTR-006

Session Timeout

STC-AUTR-

006

Session Timeout

This test will then ensure that a timeout feature is present and
functioning within the application (Merkow & Raghavan, 2012).
When a user has been inactive for a given period of time, they should
be signed out of the system, and this can be tested through creating a
user account and then observing when the timeout feature kicks in
for that user. The time to logout is a measurable component of this
test case and can be compared against the intended time to ensure

compliance.

SR-AUTR-008

User and Group

Privileges

STC-AUTR-

008

User and Group

Privileges

The system must maintain the capability to implement user access
groups (Merkow & Raghavan, 2012) and this can be verified by
inspecting the source code as well as the administrative interfaces for

implementing such controls.

20

SR-AUTR-009 | Role-Based Access STC-AUTR- | Role-Based Access | Like the test case above, this test case involves further exploration to
Control (RBAC) 009 Control (RBAC) ensure that appropriate user classes are created and that the
appropriate privileges are assigned to each user class. These user
classes can be compared against the requirements documentation to
ensure that the principle of least privilege is being followed in
implementation. This can be further verified through interviews to
ensure features are not granted to user groups that do not need them.
SR-AUDT-001 | Audit Log STC-AUDT- | Audit Log The system should maintain an audit log that logs all relevant
001 security events (Merkow & Raghavan, 2012). This can be tested by
first confirming that the audit log exists, and then committing
security-related events to ensure the events are properly logged.
SR-AUDT-003 | Logging of Specific STC-AUDT- | Logging of Specific | As an extension of the previous test case, this test case furthers the
Events 003 Events exploration by looking at specific cases that need to be logged. These

specific cases can be performed in various ways to ensure that

logging occurs in every circumstance needed.

21

SR-AUDT-005

Archival of Audit

Logs

STC-AUDT-

005

Archival of Audit

Logs

Similarly, the archival of logs must be performed with logs being
stored for the appropriate amount of time (Merkow & Raghavan,
2012). This feature can be tested through the creation and aging of
log entries to ensure the proper procedures are followed. Further,
source code evaluation can additionally confirm that these

procedures are implemented as intended.

SR-AUDT-008

Protection of Audit

Log

STC-AUDT-

008

Protection of Audit

Log

As audit logs are a prime target of malicious actors, audit logs must
not be modifiable by users including administrators (Merkow &
Raghavan, 2012). An internal penetration test can be performed to
attempt to modify these logs and a verification of the outcome can

then be observed.

SR-INTG-001

Integrity Checking

STC-INTG-001

Integrity Checking

This test case references the ability of the system to perform integrity
checking in any area where data is transmitted and received (Merkow
& Raghavan, 2012). In these areas, a thorough evaluation of the
integrity-checking process can be performed and from this analysis,

an understanding of compliance can be gained. These integrity

22

checks could also be performed at the source code level to ensure

that proper enforcement is implemented in the code.

SR-INTG-002 | Source ldentification STC-INTG-002 | Source Any time an address is passed to the application, the application must
Identification be able to verify the source of that destination (Merkow & Raghavan,
2012). This ability can be tested by attempting to perform a server-
side request forgery attack and documenting the results. The system
should not allow these attacks to occur and the proper rejection
actions should be taken.
SR-INTG-005 | Integrity of Sensitive | STC-INTG-005 | Integrity of For this test case, a thorough examination of the transport protocols
Information Sensitive used in transporting information can be performed. This can be tested
Information at all points where sensitive information is transported and in all
cases the data should be transported by secure transfer protocols with
no known vulnerabilities. Any non-compliant protocols should then
be brought into compliance and changed to validated protocols.
SR-INTG-007 | Integrity Checks STC-INTG-007 | Integrity Checks The Hackazon application must have the ability to perform integrity

checks and this feature can be tested by observing all receiving

23

points for data and verifying that integrity checks are enforced at
each. This will primarily be observed through source code
examination but can also be observed in attempting to transfer code
that has been modified en route and observing the system’s reaction

to such code.

24

References
Basta, A. (2018). Oriyano, cryptography: Infosec pro guide. McGraw-Hill Education.

https://bookshelf.vitalsource.com/reader/books/9781307297003/pageid/14

DSIT. (2023). Conducting a STRIDE based threat analysis. Department for Science, Innovation,
and Technology.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment

data/file/1155778/Conducting a STRIDE-based threat analysis.pdf

Merkow, M. S., & Raghavan, L. (2012). Secure and resilient software: Requirements, test cases,

and testing methods (1st ed.). CRC Press. https://doi.org/10.1201/b11317
Microsoft. (August 25, 2022). Microsoft threat modeling tool: Threats. Microsoft.

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats

NCSC. (February 20, 2019). Secure development and deployment guidance. National Cyber

Security Centre. https://www.ncsc.gov.uk/collection/developers-

collection/principles/continually-test-your-security

OWASP. (March 12, 2020). OWASP: Web security testing guide. OWASP.

https://owasp.org/www-project-web-security-testing-quide/

Salva, S., & Regainia, L. (2019). An approach for guiding developers in the choice of security
solutions and in the generation of concrete test cases. Software Quality Journal, 27(2),

675-701. https://doi.org/10.1007/s11219-018-9438-2

Tsui, F, Karam, O., Bernal, B. (2016). Essentials of Software Engineering (4th ed.). Jones &

Bartlett Learning. https://libertyonline.vitalsource.com/books/9781284129755

https://bookshelf.vitalsource.com/reader/books/9781307297003/pageid/14
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1155778/Conducting_a_STRIDE-based_threat_analysis.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1155778/Conducting_a_STRIDE-based_threat_analysis.pdf
https://doi.org/10.1201/b11317
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://www.ncsc.gov.uk/collection/developers-collection/principles/continually-test-your-security
https://www.ncsc.gov.uk/collection/developers-collection/principles/continually-test-your-security
https://owasp.org/www-project-web-security-testing-guide/
https://doi.org/10.1007/s11219-018-9438-2
https://libertyonline.vitalsource.com/books/9781284129755

25

Wang, C., Pastore, F., Goknil, A., & Briand, L. C. (2022). Automatic generation of acceptance
test cases from use case specifications: An NLP-based approach. IEEE Transactions on

Software Engineering, 48(2), 585-616. https://doi.org/10.1109/TSE.2020.2998503

https://doi.org/10.1109/TSE.2020.2998503

	References

